膜結構看臺膜面的平展技術有哪些?
信息來源:hao678.cn | 發布時間:2023年05月(yue)31日
膜結構看臺膜面的平展技術有哪些呢,下面小編帶大家來看一下!
據悉,膜(mo)(mo)結構(gou)看臺膜(mo)(mo)面(mian)(mian)(mian)(mian)的(de)展(zhan)(zhan)平(ping)分(fen)析主含了這些(xie)過程:明確裁剪(jian)(jian)式樣,即(ji)確定膜(mo)(mo)曲(qu)(qu)(qu)面(mian)(mian)(mian)(mian)上的(de)裁剪(jian)(jian)線(xian),將(jiang)膜(mo)(mo)曲(qu)(qu)(qu)面(mian)(mian)(mian)(mian)分(fen)解成若干(gan)的(de)子(zi)曲(qu)(qu)(qu)面(mian)(mian)(mian)(mian),然(ran)后將(jiang)各個(ge)子(zi)曲(qu)(qu)(qu)面(mian)(mian)(mian)(mian)分(fen)別近似(si)的(de)展(zhan)(zhan)開成二(er)維平(ping)面(mian)(mian)(mian)(mian)。曲(qu)(qu)(qu)面(mian)(mian)(mian)(mian)展(zhan)(zhan)開得到平(ping)面(mian)(mian)(mian)(mian)圖(tu)形(xing)的(de)過程是一個(ge)近似(si)的(de)過程,因此這一過程的(de)一個(ge)基本的(de)準則(ze)就是平(ping)面(mian)(mian)(mian)(mian)與曲(qu)(qu)(qu)面(mian)(mian)(mian)(mian)形(xing)狀(zhuang)越像,用力學方法表示可用較小變(bian)形(xing)能原(yuan)理表示,即(ji)空間曲(qu)(qu)(qu)面(mian)(mian)(mian)(mian)的(de)越優展(zhan)(zhan)平(ping)平(ping)面(mian)(mian)(mian)(mian)是從空間曲(qu)(qu)(qu)面(mian)(mian)(mian)(mian)變(bian)形(xing)到平(ping)面(mian)(mian)(mian)(mian)圖(tu)形(xing)所(suo)需變(bian)形(xing)能較小的(de)平(ping)面(mian)(mian)(mian)(mian)圖(tu)形(xing)。
根據較(jiao)小變(bian)形能(neng)(neng)原理,以有限(xian)元(yuan)方法(fa)來進(jin)行(xing)展平(ping)分析(xi)。用有限(xian)元(yuan)方法(fa)進(jin)行(xing)分析(xi)要先(xian)確(que)定一個(ge)與(yu)空間(jian)曲(qu)面有限(xian)元(yuan)網(wang)(wang)格(ge)的(de)(de)劃(hua)分相一致的(de)(de)平(ping)面圖(tu)形有限(xian)元(yuan)網(wang)(wang)格(ge)劃(hua)分。展平(ping)過(guo)程(cheng)可表示為∶①、計算平(ping)面圖(tu)形的(de)(de)初始應力與(yu)等效(xiao)結(jie)點力(將空間(jian)曲(qu)面變(bian)形到平(ping)面圖(tu)形引起的(de)(de)平(ping)面圖(tu)形內(nei)應力的(de)(de)變(bian)化);②、有限(xian)元(yuan)計算,將平(ping)面圖(tu)形內(nei)應力釋放,得到末(mo)后的(de)(de)展平(ping)圖(tu)形;③、重復上述過(guo)程(cheng),直到得到變(bian)形能(neng)(neng)較(jiao)小的(de)(de)平(ping)面圖(tu)形。
(一)、平面圖形的(de)初始應力(li)與等(deng)效結(jie)點力(li)的(de)計算:
將膜(mo)(mo)結(jie)(jie)構看臺空間(jian)曲面(mian)離散(san)成(cheng)三(san)(san)(san)(san)結(jie)(jie)點(dian)二角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)網(wang)(wang)格,平(ping)(ping)(ping)(ping)面(mian)圖形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)也相應的(de)(de)(de)(de)(de)離散(san)成(cheng)三(san)(san)(san)(san)結(jie)(jie)占三(san)(san)(san)(san)角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)網(wang)(wang)格。空間(jian)曲面(mian)變(bian)(bian)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)成(cheng)平(ping)(ping)(ping)(ping)面(mian)圖形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)用有限(xian)元(yuan)(yuan)(yuan)方法(fa)計算時,實際(ji)上是對應三(san)(san)(san)(san)角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)之間(jian)的(de)(de)(de)(de)(de)變(bian)(bian)化,空間(jian)的(de)(de)(de)(de)(de)三(san)(san)(san)(san)角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)變(bian)(bian)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)到平(ping)(ping)(ping)(ping)面(mian)三(san)(san)(san)(san)角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)分(fen)三(san)(san)(san)(san)個部(bu)分(fen)∶三(san)(san)(san)(san)角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)在單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)所在平(ping)(ping)(ping)(ping)面(mian)內的(de)(de)(de)(de)(de)變(bian)(bian)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)、三(san)(san)(san)(san)角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)在平(ping)(ping)(ping)(ping)面(mian)外的(de)(de)(de)(de)(de)旋(xuan)轉(zhuan)及(ji)三(san)(san)(san)(san)角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)整(zheng)體的(de)(de)(de)(de)(de)位移。在這(zhe)三(san)(san)(san)(san)個變(bian)(bian)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)之中,二角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)平(ping)(ping)(ping)(ping)面(mian)外旋(xuan)轉(zhuan)與(yu)整(zheng)體的(de)(de)(de)(de)(de)位移均(jun)不會(hui)產生單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)內應變(bian)(bian)。因此在確(que)(que)定膜(mo)(mo)結(jie)(jie)構平(ping)(ping)(ping)(ping)面(mian)圖形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)的(de)(de)(de)(de)(de)初始應力與(yu)等效結(jie)(jie)點(dian)力時,可(ke)以只(zhi)進(jin)行比較(jiao)由空間(jian)三(san)(san)(san)(san)角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)與(yu)平(ping)(ping)(ping)(ping)面(mian)三(san)(san)(san)(san)角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)狀(zhuang)上的(de)(de)(de)(de)(de)差別所引起的(de)(de)(de)(de)(de)單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)應變(bian)(bian),再(zai)根據這(zhe)一應變(bian)(bian)確(que)(que)定單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)應力。這(zhe)樣(yang)由空間(jian)三(san)(san)(san)(san)角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)變(bian)(bian)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)到平(ping)(ping)(ping)(ping)面(mian)二角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)的(de)(de)(de)(de)(de)過程(cheng)(cheng)就可(ke)以等效為(wei)兩(liang)個平(ping)(ping)(ping)(ping)面(mian)三(san)(san)(san)(san)角(jiao)(jiao)(jiao)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)單(dan)(dan)(dan)(dan)元(yuan)(yuan)(yuan)變(bian)(bian)形(xing)(xing)(xing)(xing)(xing)(xing)(xing)(xing)過程(cheng)(cheng)。
這(zhe)(zhe)一過程的(de)(de)實現目前常(chang)用的(de)(de)有兩種方(fang)法(fa)∶(1)、利用三(san)(san)(san)(san)角(jiao)(jiao)形(xing)(xing)(xing)各邊應(ying)(ying)(ying)變(bian)(bian)與三(san)(san)(san)(san)角(jiao)(jiao)形(xing)(xing)(xing)單(dan)(dan)(dan)元(yuan)的(de)(de)應(ying)(ying)(ying)變(bian)(bian)的(de)(de)關系(xi),根(gen)據空間(jian)(jian)三(san)(san)(san)(san)角(jiao)(jiao)形(xing)(xing)(xing)單(dan)(dan)(dan)元(yuan)與平面(mian)三(san)(san)(san)(san)角(jiao)(jiao)形(xing)(xing)(xing)單(dan)(dan)(dan)元(yuan)對應(ying)(ying)(ying)邊長度的(de)(de)不(bu)同,確(que)定(ding)(ding)對應(ying)(ying)(ying)邊的(de)(de)應(ying)(ying)(ying)變(bian)(bian)來(lai)確(que)定(ding)(ding)三(san)(san)(san)(san)角(jiao)(jiao)形(xing)(xing)(xing)單(dan)(dan)(dan)元(yuan)的(de)(de)應(ying)(ying)(ying)變(bian)(bian);(2)、由三(san)(san)(san)(san)角(jiao)(jiao)形(xing)(xing)(xing)之間(jian)(jian)的(de)(de)奇異值(zhi)變(bian)(bian)換得出(chu)空間(jian)(jian)三(san)(san)(san)(san)角(jiao)(jiao)形(xing)(xing)(xing)變(bian)(bian)形(xing)(xing)(xing)到平面(mian)三(san)(san)(san)(san)角(jiao)(jiao)形(xing)(xing)(xing)過程中單(dan)(dan)(dan)元(yuan)主(zhu)軸方(fang)向的(de)(de)變(bian)(bian)形(xing)(xing)(xing),根(gen)據單(dan)(dan)(dan)元(yuan)應(ying)(ying)(ying)變(bian)(bian)與單(dan)(dan)(dan)元(yuan)主(zhu)軸方(fang)向應(ying)(ying)(ying)變(bian)(bian)的(de)(de)關系(xi)米得到單(dan)(dan)(dan)元(yuan)應(ying)(ying)(ying)變(bian)(bian)。這(zhe)(zhe)兩種方(fang)法(fa)在理論上是等價的(de)(de)。
(二)、展平計算(suan):
得到平面(mian)圖(tu)形(xing)(xing)三角形(xing)(xing)單元中的(de)應力(li)(li)及(ji)等效結點力(li)(li)后,就可以解決平面(mian)應力(li)(li)問題。有(you)計算過程并(bing)(bing)沒有(you)對平面(mian)圖(tu)形(xing)(xing)的(de)外部邊界(jie)(jie)加以約束,因此終算結果的(de)邊界(jie)(jie)長(chang)(chang)度與空間曲面(mian)的(de)邊界(jie)(jie)長(chang)(chang)度并(bing)(bing)不(bu)定然相等,這樣相鄰的(de)兩(liang)片空間曲面(mian)的(de)平面(mian)展平圖(tu)形(xing)(xing)在(zai)難(nan)于(yu)保持(chi)邊界(jie)(jie)長(chang)(chang)度一致,會引起安裝上的(de)不(bu)方便。為解決這一問題,有(you)文獻引入了有(you)邊界(jie)(jie)約束的(de)越小(xiao)變形(xing)(xing)能(neng)原(yuan)理,并(bing)(bing)根據這一原(yuan)理,對膜結構看臺(tai)平面(mian)圖(tu)形(xing)(xing)的(de)邊界(jie)(jie)增加一圈(quan)剛度相對較大的(de)桿單元,以保障邊界(jie)(jie)長(chang)(chang)度的(de)一致性(xing)。
以上(shang)就是(shi)本(ben)期主要(yao)內容,后(hou)續小(xiao)編會繼續為您整理相關訊息,如有問題,歡迎關注咨詢!